Factors affecting the resolution of Femtochrome SHG Autocorrelators:

- Material Dispersion <<1 fs
- Delay Resolution << 1fs
- Group Velocity Dispersion (GVD) in air < 1fs
- Group Delay Dispersion (GDD) of Mirror Reflections < 1fs
- Beamsplitter < 1fs
- Focus Mirror << 1fs
- NL crystal thickness

Using only reflective optics, <u>material dispersion</u> is nonexistent in Femtochrome Autocorrelators.

Delay Resolution is also << 1fs, w/ Femtochrome's unique //Mirrors rapid scan delay technique*.

GVD in Air

Travelling a length z of material, a Gaussian pulse $E(t) = exp[-t^2/(2T_0^2)]$ of initial duration T_0

 $(To= 0.6T_{fwhm})$ stays Gaussian with duration broadening as:

 $\mathbf{T} = \mathbf{To} \ [\mathbf{1} + (\mathbf{zk''} / \mathbf{T_o}^2)^2]^{1/2}$

where k" is the GVD parameter. In the case of air, $\mathbf{k''} = \mathbf{0.2(fs)^2/cm}$ at 800nm, and $\mathbf{k''} = 0.1(fs)^2/cm$ around 1.5µm.

The pathlength travelled in air within the FR-103XL before the NL crystal is ~ 60cm.

It follows that, broadening in air is negligible for pulsewidths > 10 fs.

For T_{ofwhm} = **5fs** (To=3fs), T= 1.17T_o and T_{fwhm} = **5.8fs**

Hence, the affect of GVD in air is < 1fs down to 5fs pulsewidth!

* See accrcy.pdf

GDD of High Refecting Metallic Mirrors

There are 5-6 reflections from metallic coated mirrors for either beam in the FR-103XL.

k"=GDD/unit length, and assuming that $T = T_0 [1 + (GDD/T_0^2)^2]^{1/2}$ in analogy with the above,

 $T = T_o [1+(GDD/T_o^2)^2]^3$ after 6 reflections. [This is an upper limit!].

For Femtochrome Ag coated mirrors, $|\text{GDD}| < 3(\text{fs})^2$.

For an input pulsewidth of $T_{ofwhm} = 6fs$, To = 3.6fs, and it follows that

 $T = To[1+0.05]^3 = 1.16T_o$ Hence $T_{fwhm} = 6.95fs$

Hence, the affect of GDD of mirror reflections is <1fs, down to a 6fs pulsewidth!

Focus Mirror

Use **parabolic mirror** for < 30fs pulsewidths, to have <<1fs resolution

NL Crystal

Depending on the crystal and wavelength ~ 100μ m crystal thickness would be generally sufficient, down to ~20fs pulsewidth. For shorter pulsewidhs, a thinner NL crystal needs to be user

specified.

Beamsplitter

Femtochrome utilizes < .25 μ m thick beamsplitters yielding close to 33/67 (R/T) ratio with good uniformity over a broad wavelength range. This is close to <u>ideal</u>(R/T=50/50) since the intensity of beams incident on the NL crystal (RT) is then ~ .22 as compared to .25 for the ideal case.

Motor Jitter

The <u>uniform</u> rotation mode with high angular momentum leads to generation of optical delay with a precisely known functional form, as shown above. This motion is phase locked loop (PLL) crystal controlled, and its jitter is measured to be $< 10 \mu \text{sec}/100 \text{ms}$ peak-to-peak.

Hence, due to this jitter

$$\Delta T_{j}/T < 10^{-4}$$
.

For instance, if T=10ps, $\Delta T_i < 1$ fs.

// Mirrors accuracy

Parallelism of delay mirrors is $< 0.5 \times 10^{-3}$ radians in all FR-103 units, to assure <1%/100ps affect on measured pulsewidth.